mshd.net
当前位置:首页 >> 退火算法 >>

退火算法

“模拟退火”算法是源于对热力学中退火过程的模拟,在某一给定初温下,通过缓慢下降温度参数,使算法能够在多项式时间内给...

模拟退火的话进化是由参数问题t控制的,然后通过一定的操作产生新的解,根据当前解的优劣和温度参数t确定是否接受当前的新解。 遗传算法主要由选择,交叉,变异等操作组成,通过种群进行进化。 主要不同点是模拟退火是采用单个个体进行进化,遗...

1、模拟退火算法是一种新的随机搜索方法,它是近年来提出的一种适合于解决大规模组合优化问题的通用而有效的近似算法。与以往的近似算法相比,模拟退火算法具有描述简单、使用灵活、运用广泛、运行效率高和较少受到初始条件约束等优点。 2、模拟退...

模拟退火的基本思想: (1) 初始化:初始温度T(充分大),初始解状态S(是算法迭代的起点), 每个T值的迭代次数L (2) 对k=1,……,L做第(3)至第6步: (3) 产生新解S′ (4) 计算增量Δt′=C(S′)-C(S),其中C(S)为评价函数 (5) 若Δt′0,然后转第2步。

退火优点:计算过程简单,通用,鲁棒性强,适用于并行处理,可用于求解复杂的非线性优化问题。缺点:收敛速度慢,执行时间长,算法性能与初始值有关及参数敏感等缺点。 PSO:演化计算的优势在于可以处理一些传统方法不能处理的例子例如不可导的节...

数学建模还是多用简单、常规的算法,模拟退火优化算法比较有理论意义,实践或数学建模上还是较少用的

在枚举所有解时,当遇到的解在当前情况下是最优时,就认为它是最优解。当从A点到B点时,由于B点比A点的解更优,所以会认为B点是最优解。 显然这样的效率很高,但得到的最优解质量也很差。

clear clc a = 0.95 k = [5;10;13;4;3;11;13;10;8;16;7;4]; k = -k;% 模拟退火算法是求解最小值,故取负数 d = [2;5;18;3;2;5;10;4;11;7;14;6]; restriction = 46; num = 12; sol_new = ones(1,num); % 生成初始解 E_current = inf;E_best = inf...

模拟退火算法(Simulated Annealing,SA)最早的思想是由N. Metropolis 等人于1953年提出。1983 年,S. Kirkpatrick 等成功地将退火思想引入到组合优化领域。它是基于Monte-Carlo迭代求解策略的一种随机寻优算法,其出发点是基于物理中固体物质的退...

bp神经元网络的学习过程真正求解的其实就是权值的最优解,因为有可能会得出局部最优解,所以你才会用模拟退火来跳出局部最优解,也就是引入了逃逸概率。在这里你可以把bp的学习过程理解成关于 误差=f(w1,w2...) 的函数,让这个函数在模拟退火...

网站首页 | 网站地图
All rights reserved Powered by www.mshd.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com